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Abstract

We study a model in which an issuer can manipulate the information obtained by a

credit rating agency (CRA) seeking to screen and rate the quality of its asset. In some

equilibria, more intense CRA screening leads to more manipulation by the issuer, since

it improves the payoff to surviving the screening. As a result, the CRA may optimally

abandon screening, even though the direct marginal cost of screening is zero. This result

suggests that strategic disclosure and issuer moral hazard may have played an important

role in recent ratings failures.
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1 Introduction

The failure of credit ratings to predict defaults of mortgage-backed securities in the lead-up

to the financial crisis has raised questions about the role of credit rating agencies (CRAs) in

the economy. In principle, these “information intermediaries” produce information that allows

investors to more accurately price assets. Importantly, they rely on the issuers of the assets

for much of the information on which their ratings are based. Issuers seeking favorable ratings

may have an incentive to manipulate the information that a CRA observes. A full assessment

of the effects of CRA screening on the quality of ratings should therefore account for the effects

of a CRA’s actions on issuer incentives.

We construct a model in which an issuer has a financial asset (or claim) to sell in each of

two periods. A CRA observes a signal about the quality of the asset, and produces a rating

based on this signal. To account for the reliance of the CRA on the issuer for information,

we allow the issuer to manipulate the CRA’s signal. In turn, the CRA can invest resources

in scrutinizing the asset in order to reduce the likelihood that such manipulation succeeds.

We exhibit equilibria in which more intense CRA scrutiny in the first period strengthens the

issuer’s incentive to manipulate. The resulting increase in manipulation effectively undoes the

positive direct effect of greater scrutiny on rating accuracy. Therefore, the optimal level of

CRA scrutiny can be low (potentially zero), even if the CRA cares about ratings accuracy and

the direct cost of more intense CRA scrutiny is small.

Many commentators have argued that the apparent lack of CRA diligence leading up

to the financial crisis was due to CRA negligence, or possibly even complicity with issuers

attempting to defraud investors. Our results suggest that a CRA might choose a relatively lax

investigative policy even if it is concerned about ratings accuracy. Because of issuers’ strategic

disclosure incentives, greater diligence may not yield much improvement in the accuracy of

ratings. Moreover, attempting to infer the degree of CRA diligence from observed rating

accuracy may be difficult. Finally, our results raise doubts that regulatory changes forcing

CRAs to exert greater investigative effort would actually lead to more accurate ratings.

Our model has two periods. In each period, an issuer has an asset with either high or low

value. A CRA obtains a high or low signal of the asset value, but the issuer may be able to

manipulate the signal that the CRA observes. The CRA always observes a high signal when the

value of the asset is high. If the value of the asset is low, the CRA observes a low signal if the

issuer does not manipulate, but may observe a high signal if the issuer does manipulate. The

probability that the CRA observes the high signal in this case (i.e., manipulation is successful)
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decreases with the level of screening that the CRA exercises (discussed in more detail below).

After observing its signal, the CRA issues either a high or low rating. The issuer then sells its

asset to rational expectations-forming investors operating in a perfectly competitive market.

Finally, the asset’s payoff is realized, and the period ends.

There are two types of issuer in our model. An “opportunistic” type issuer can manipulate

the CRA’s signal, while an “honest” type issuer cannot. This structure allows us to capture

reputational incentives for honest behavior in reduced form, and can be justified by assuming

that some issuers face an unobserved high cost of engaging in manipulation.1 It also appears

broadly consistent with the way at least one of the major rating agencies perceives the issuers

whose securities it rates. In a 2002 statement to the SEC, Moody’s concluded that “Most

issuers operate in good faith and provide reliable information to the securities markets, and

to us. Yet there are instances where we may not believe that the numbers provided or the

representations made by issuers provide a full and accurate story.”2 The opportunistic issuer’s

objective at any point in time is to maximize its discounted cash flow from selling assets.

An issuer knows its type, which does not change over time. Other agents only know the

distribution of issuer types.

The CRA chooses a level of costly screening in each period.3 We assume that the CRA

chooses its first period screening intensity before the issuer’s manipulation decision, and that

all agents observe this level of screening. We think of this level of screening as a policy choice.

Agents become aware of the CRA’s screening policy through a variety of sources, including its

myriad interactions with issuers. We allow the CRA to choose its optimal screening intensity

in the second period after observing actions and outcomes in the first period.

The CRA’s objective at each point in time is to minimize the discounted value of its current

and future losses. Its loss in each period consists of two components. The first component is

the direct cost of screening, which is increasing and convex in screening intensity. The second

one is the likelihood that it makes a rating mistake (i.e., that it rates a low-valued asset high

or vice versa). This preference for accurate ratings can be justified by the threat of regulatory

sanctions, lawsuits, and reputational costs. The weight that the CRA places on the second

1The adverse selection approach to modeling reputations was introduced by Kreps and Wilson (1982) and
Milgrom and Roberts (1982).

2From the Written Statement of Raymond W. McDaniel, President, Moody’s Investors Service Before the
United States Securities and Exchange Commission, November 21, 2002.

3In our model, the CRA bears the marginal cost of screening, rather than passing it on to the issuer; implicitly,
this assumes that the CRA’s effort is difficult to verify or contract upon. Along these lines, in 2008 New York
Attorney General Andrew Cuomo and the major rating agencies agreed to a plan that requires fees to be set
up front, before a rating agency does any work.
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component (relative to the first) captures the importance of these costs.

Assuming that the CRA’s screening is imperfect, an opportunistic issuer benefits from

manipulating the CRA’s signal when it has a low-valued asset because it can sell its asset at a

higher price when the CRA’s rating is high. In the second period, there are no countervailing

incentives, and the opportunistic issuer manipulates with probability one when it has a low-

valued asset. Taking into account its belief about the probability that the issuer is opportunistic

given the events of the first period, the CRA then chooses its screening intensity in the second

period (knowing that the opportunistic issuer will manipulate with probability one in the

second period when it has a low-valued asset). The greater the weight that the CRA places

on the issuer being opportunistic, the more intensely it screens in the second period.

As the honest type issuer never manipulates the CRA’s signal, it never has an asset rated

high that subsequently turns out to have low value. Therefore, if the issuer’s asset is rated

high in the first period and its value proves to be low, it is revealed to be the opportunistic

type. Being revealed as such eliminates the opportunistic issuer’s ability to pool with the

honest type in the second period, and therefore reduces the expected price at which it can sell

its asset in the second period. The risk of this “reputational loss” counters the opportunistic

issuer’s incentive to manipulate in the first period. As a result, the opportunistic issuer may

manipulate with probability less than one in the first period.

A high rating allows the issuer to charge a higher price for its asset because it provides

certification of the asset’s value.4 An increase in the CRA’s screening intensity increases the

likelihood that the asset’s value is high when the CRA’s rating is high, and therefore increases

the benefit of a high rating. Put differently, the certification benefit of a high rating to the issuer

is more valuable when investors know that the CRA is scrutinizing the asset more carefully.

This provides the insight for our first main result: Greater screening intensity in the first period

results in more manipulation by the opportunistic issuer (assuming that the opportunistic type

manipulates with probability less than one). This equilibrium effect undoes the benefit of more

intense screening. That is, the probability of a ratings mistake, which depends on both the

probability that the issuer manipulates and the CRA’s screening intensity, does not change

with the level of screening intensity. An immediate implication of this result is that it may

not be possible to infer a CRA’s screening intensity from the accuracy of its ratings. This

result also suggests that regulatory policies forcing CRAs to screen more intensely may not

4In our model, the CRA’s rating contains new information not previously available to the market. Empirically,
Kliger and Sarig (2000) show that when Moody’s refined its ratings categories in 1982, both bond and stock
prices of affected firms reacted (in opposite directions). See their paper for additional references on whether
ratings contain new information.
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yield improvements in ratings accuracy.

Under some circumstances (for example, when ratings mistakes are very costly), the CRA

optimally chooses a high level of screening in the first period, accepting that the opportunistic

issuer will manipulate with probability one. However, under other circumstances (in particular,

when inaccurate ratings are less costly), the CRA optimally chooses not to screen at all in the

first period, even though the marginal cost of increasing screening intensity is zero. This is

our second main result, and offers a new explanation based on issuer rather than CRA moral

hazard for why CRAs might put little effort into screening.

Our paper contributes to the growing literature on the role of credit rating agencies and

the phenomenon of ratings inflation. In papers by Bolton, Freixas, and Shapiro (2012), Skreta

and Veldkamp (2009), and Sangiorgi and Spatt (2011) inflated ratings emerge from ratings

shopping—an issuers’ ability to conceal unfavorable ratings. Mathis, McAndrews, and Rochet

(2009) demonstrate in a dynamic model that reputational concerns are insufficient to prevent

ratings inflation if the flow income from new ratings is high enough in a given period. In a

related vein, Bar-Isaac and Shapiro (2012) analyze ratings quality over the business cycle and

show that agencies issue less accurate ratings when their income from fees is high, competition

in the labor market for analysts is tough, and default probabilities for the rated securities are

low. Opp, Opp, and Harris (2013) argue that ratings inflation may result from regulatory

distortions when credit ratings are used for regulatory purposes such as bank capital require-

ments, and Fulghieri, Strobl, and Xia (2013) demonstrate how the possibility that CRAs can

issue unsolicited credit ratings may lead to ratings inflation by allowing CRAs to extract more

from issuers in exchange for issuing a favorable rating. Bouvard and Levy (2012) and Frenkel

(2013) consider a CRA that has an incentive to maintain two reputations—with investors for

stringency, and with issuers for leniency. The latter in turn leads to ratings inflation.

While these papers share some important features with ours, they do not address the

question of how the CRA’s policies influence issuers’ incentives to manipulate the information

on which the CRA bases its ratings and hence the accuracy of those ratings. We find that

poor screening by the CRA can be optimal once these effects are taken into account. A word

of caution is in order though: In our model, “poor screening” is not equivalent to “ratings

inflation.” Indeed, we show that under some conditions better screening is completely unwound

by strategic disclosure on the part of the issuer, and so does not lead to a better quality of

credit ratings.

Our paper is also related to the literature on performance manipulation. Important con-
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tributions to this literature include work by Stein (1989), Goldman and Slezak (2006), and

Crocker and Slemrod (2007). These papers show that concerns about short-term stock prices

can lead to “signal-jamming” equilibria in which managers take costly actions to manipulate

their performance reports, even though market participants correctly anticipate the extent of

manipulation and take it into account when pricing the firm’s stock. However, in contrast

to our analysis, these papers take the manager’s manipulation cost as exogenous and do not

consider the effect of the investors’ screening intensity on the manager’s manipulation strategy.

In this respect, our approach is closer in spirit to Strobl (2013), who demonstrates that stricter

disclosure requirements can lead to more earnings manipulation.

A number of papers in the agency literature have shown that more information can hurt

the principal by reducing the agent’s incentive to work hard in order to prove his worth

(e.g., Holmström, 1999; Dewatripont, Jewitt, and Tirole, 1999). Similarly, Prendergast (1993),

Brandenburger and Polak (1996), and Prat (2005) show that greater transparency about a

manager’s actions can have detrimental effects because it induces the manager to act according

to how a talented manager is expected to act and to disregard useful private information. A

similar phenomenon arises in Cohn and Rajan (2013), who show that more stringent corporate

governance can exacerbate the agency problem caused by the manager’s reputational concerns.

Our analysis complements these papers by identifying a new channel through which more

information can have detrimental effects. In our model, a better screening technology influences

the issuer’s incentive to misbehave because of its effect on the value of a high rating.

Finally, our paper is related to the broader literature on reputation as an incentive mech-

anism. This literature is enormous, and we will not do it justice here. Firms have been shown

to face reputational concerns in many aspects of their business, including repaying debt (Di-

amond, 1989), fighting new entrants (Kreps and Wilson, 1982; Milgrom and Roberts, 1982),

not holding up suppliers (Banerjee and Duflo, 2000), meeting earnings targets (Fisher and

Heinkel, 2008) and producing quality products (Cabral, 2000; Hörner, 2002). Reputation is

also known to matter for underwriters (Chemmanur and Fulghieri, 1994a), banks (Chemma-

nur and Fulghieri, 1994b), and workers (Tadelis, 1999). For reputation to be interesting from

an economist’s viewpoint, the benefit of “cheating” (not repaying debt, for example) must be

weighed against the cost of a lost reputation. These papers show that costs of reputation loss

can be large enough to ensure “good behavior.”
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2 Model

An issuer and a credit rating agency (CRA) each live for two periods, indexed by t = 1, 2. In

each period, the issuer wishes to sell a one-period financial claim with stochastic cash flows.

For example, the claim may be a corporate bond or an asset-backed security. Since the claim

is a financial asset for investors, we refer to it as an asset throughout. In each period, the cash

flow from that period’s asset will be revealed to the market at the end of the period. A period

is therefore broadly interpreted to be the length of time in which the market finds out about

the realized cash flows from an asset.

At the beginning of the period, the value of the asset is unknown to all parties. The realized

cash flow vt may be high (vh) or low (v`). There is no discounting within each period, so we

alternately refer to v as the value of the asset in that period. Without loss of generality, we

normalize vh to 1 and v` to 0. In the first period, v1 = vh with probability η1 ∈ (0, 1) and

v1 = v` with probability 1− η1. Therefore, η1 is also the expected value of the asset. We allow

for persistence of asset values across the two periods, to account for intrinsic characteristics

of the issuer that may lead to a correlation in values across time. Specifically, we allow the

probability that v2 = 1 in the second period to depend on the realized value of v1 in the first

period. Let ηi2 = Prob(v2 = vh | v1 = vi) be the probability of a high cash flow in the second

period, given that the cash flow in the first period was vi, for i ∈ {h, `}. Then, we assume that

ηh2 ≥ η1 and η`2 =
η1(1−ηh2 )

1−η1 ≤ η1. This choice of η`2 ensures that the asset continues to have an

unconditional expected value of η1 at time 2. If ηh2 = η1, there is no persistence across periods,

while if ηh2 > η1, there is positive persistence.

In each period t = 1, 2, the following sequence of events occurs. First, the CRA establishes

a screening intensity, αt ∈ [0, 1], that is observed by all parties. Second, the issuer applies for a

rating. In the process, the issuer generates a signal gt that is observed by the CRA but not by

investors. The issuer can choose to manipulate the signal. If the cash flow is vh, manipulation

has no effect and signal gt = gh is generated. If the cash flow is v` and the issuer manipulates,

the CRA obtains signal gt = g` with probability αt and signal gt = gh with probability 1−αt.
In the absence of manipulation, gt = g` with probability one. Third, the CRA assigns a rating

rt to the asset. We assume throughout that the CRA has no discretion in manipulating its

rating once the signal gt has been obtained. That is, the CRA must assign a rating rt = ri

on receiving signal gt = gi, for i ∈ {h, `}.5 This restriction allows us to focus on the CRA’s

5The CRA may be subject to lawsuits from investors if it assigns a high rating rh on receiving signal g`, the
low signal. Witness, for example, the recent Justice Department suit against S&P (see “U.S. Sues S&P Over
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screening decisions without having to consider the possibility that the CRA is strategic in its

rating decisions. Fourth, investors observe the rating rt and purchase the asset at a price pt.

Investors are perfectly competitive so the asset is fairly-valued (i.e., pt is the expected payoff

of the asset conditional on investors’ information, including rt). Fifth, the cash flow from the

asset vt is observed.6

The structure of the game between the issuer and the CRA captures the idea that the

issuer may want to hide information from the CRA. Rather than modeling the signal as a

message sent from the issuer to the CRA, we model it in reduced form, with the likelihood of

successful garbling depending on αt, the screening intensity of the CRA.7 Since the issuer has

the incentive to hide bad news but reveal good news, we model the signal as asymmetric, with

cash flow vh always generating signal gh. In what follows, an issuer that does not manipulate

information is said to disclose truthfully, whereas an issuer that manipulates is said to lie.

The issuer has two “integrity” types, honest (H) and opportunistic (O). The prior proba-

bility that the issuer has type H is µ1. The integrity type is privately known to the issuer, and

reflects intrinsic features about the issuer and its cash flow sources that make manipulation

feasible or infeasible. We assume that the honest issuer always reports truthfully, or equiva-

lently has an infinite cost of manipulating the signal. This could be because it suffers a direct

disutility from lying, faces a high reputational cost to lying and being found out, or finds lying

to be technologically difficult (e.g., some firms are more transparent than others). As a result,

in evaluating the asset of an honest issuer, the CRA’s signal is consistent with the true value

of the asset.

In contrast, an opportunistic issuer has zero manipulation cost, and no direct disutility

from lying. Therefore, it will manipulate the CRA’s information whenever it can thereby

increase its own payoff. We allow the O-type issuer to mix between manipulating and not

manipulating its signal, with σt denoting the probability that the O-type issuer manipulates

in period t. Figure 1 displays the full sequence of events in each period.

Next, we describe the payoffs that the various parties earn in the two periods. In aggregating

payoffs across periods, all parties place a weight of one on first period payoffs and of δ ≥ 0 on

Ratings,” Wall Street Journal, February 5, 2013). Conversely, an issuer may sue the CRA if it assigns a low
rating r` despite having received signal gh, the high signal.

6As manipulation has no effect if the asset value is high, we could equivalently assume the issuer privately
knows the true value at the start of the period. An issuer with a high-valued asset will never want to manipulate,
so such an assumption would leave the model and analysis unchanged.

7We have analyzed an alternate version of the model in which the issuer does send a message to the CRA.
This version is analytically less tractable because the CRA’s and investors’ information sets can differ, increasing
the number of states. Numerical examples suggest that the main insights of the paper continue to hold in the
alternate model.
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CRA chooses

screening

intensity

αt

Issuer chooses

manipulation

probability σt;

generates signal

gh or g`

CRA assigns

rating rh or r`
Investors

buy asset

at fair value

Cash flow

vt observed

by all parties

Figure 1: Sequence of events in each period t = 1, 2

second period payoffs. Here, δ may be interpreted as a discount factor, in which case δ ≤ 1 is

natural. More broadly, δ just reflects the importance of period 2 as compared to period 1. If

one thinks of period 2 as representing in reduced form multiple future periods after period 1,

it may be reasonable to consider the case in which δ > 1.

Investors obtain a payoff of vt− pt in period t. The issuer obtains an unmodeled benefit of

B > vh from selling the asset and investing the proceeds in a project, and its payoff at time t

is B − vt + pt. This ensures that the issuer always sells its asset. As B and vt are exogenous,

we can consider the issuer’s payoff in period t to be pt without loss of generality. This results

in an overall payoff in the game to the issuer of p1 + δ p2.

The CRA minimizes its total cost. In each period, its cost has two components. The direct

cost of screening the issuer with intensity αt is c(αt), where c is strictly increasing and strictly

convex, with c(0) = c′(0) = 0. The CRA also incurs an indirect reputational cost whenever

it makes a rating error, that is, whenever an asset has value vh but is rated r` or vice versa.

Since an asset with value vh always generates signal gh, an error by the CRA can only occur

when the asset has low value and the CRA issues a rating rh. The cost of the CRA at time t

may then be written as ψt = λProb(vt = v`, rt = rh) + c(αt), and its cost in the overall game

is Ψ = ψ1 + δ ψ2. Here, λ ≥ 0 is a parameter that determines the relative importance of the

cost of making an error versus the direct cost of screening.

We consider perfect Bayesian equilibria of this game. Since the strategy of the honest type

is fixed (it never manipulates) as is the rating assignment process for the CRA, an equilibrium

can be described by the screening strategy of the CRA and the strategy of the O-type issuer

in each period t, and by the corresponding beliefs. Note that the period 2 strategy is state-

contingent in the sense that actions can depend on outcomes in period 1. Further, the presence

of the H-type ensures that there are no unreached information sets in the game.
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2.1 Single-Period Case

Suppose first that there is only one period. Let η1 denote the probability that v = vh and

pi = p1(ri) the market price of an asset with rating ri, i ∈ {h, `}. As the honest issuer always

generates a truthful signal, in any equilibrium it must be that ph > p`. Fix the CRA’s screening

intensity at α and consider the O-type issuer. Suppose it manipulates its information with

probability σ. If the asset value is vh, manipulation has no effect and it obtains a rating rh. If

the asset value is v`, it obtains a rating r` with probability 1− σ(1− α) and a rating rh with

probability σ(1 − α). That is, with probability σ(1 − α), it is successful in its manipulation

attempt. Its expected payoff is therefore η1p
h + (1 − η1)

(
(1− σ(1− α)) p` + σ(1− α) ph

)
=

(η1 + (1− η1)σ(1− α)) ph + (1− η1)(1− σ(1−α)) p`. As ph > p`, it is immediate that for any

α < 1, the unique best response is to manipulate with probability one.

Recall that the H-type firm manipulates with probability zero (i.e., it always generates a

truthful signal). Therefore, if the CRA obtains signal gh, with probability µ1η1
η1+(1−η1)(1−µ1)(1−α)

the firm is of type H and the true cash flow is vh. With probability (1−µ1)η1
η1+(1−µ1)(1−η1)(1−α) , the

firm has type O and the true cash flow is vh. Finally, with probability (1−µ1)(1−η1)(1−α)
η1+(1−µ1)(1−η1)(1−α) , the

firm has type O and the true cash flow is v`. Following a signal gh, the posterior probability

that the asset’s payoff is vh is therefore η1
η1+(1−µ1)(1−η1)(1−α) .

Given the strategies of the H-type and O-type issuer, the CRA only makes a rating mistake

if it issues a high rating rh for an asset whose value turns out to be v`. The probability of an

error is therefore (1− µ1)(1− η1)(1− α). The CRA’s problem is:

min
α

λ(1− µ1)(1− η1)(1− α) + c(α). (1)

Observe that if the CRA chooses α = 1, its total cost is c(1), and if it chooses α = 0, its

total cost is λ(1 − µ1)(1 − η1). Therefore, when c(1) > λ(1 − µ1)(1 − η1), the CRA strictly

prefers α = 0 to α = 1. This condition then implies that, in the single-period game, the CRA

chooses α < 1. We assume that a slightly stronger version of this condition holds. Specifically,

noting that η`2 ≤ η1, we assume that c(1) > λ(1 − µ1)(1 − η`2). This ensures that the optimal

choice of α is less than one, even in the two-period case when the probability of the high cash

flow vh is η`2. This allows us to rule out corner solutions in which the CRA reaches a maximum

level of scrutiny in both the one- and two-period cases.

Assumption 1. c(1) > λ(1− µ1)(1− η`2).
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The first-order condition for the CRA’s problem is c′(α) = λ(1−η1)(1−µ1). Let φ(µ, η) =

(c′)−1(λ(1− η)(1− µ)) for any CRA belief µ (where µ is the probability the firm has type H)

and probability of high cash flow η. Note that φ > 0 as long as µ < 1. Although φ depends

on λ as well, for convenience we suppress this variable in the notation.

Proposition 1. In the single-period game, there is a unique perfect Bayesian equilibrium. It

has the following properties:

(i) The CRA chooses a screening intensity of α̂ = φ(µ1, η1).

(ii) The H-type issuer always discloses truthfully, and the O-type issuer manipulates with

probability one.

(iii) The price of the asset is 0 if the rating is r` and η1
η1+(1−µ1)(1−η1)(1−α̂) if the rating is rh.

Since c is strictly convex, it follows that the optimal screening intensity α̂ decreases in both

µ1 and η1. This is intuitive: given the strategies of each type of issuer, the CRA’s rating is

incorrect only when the issuer has type O and its true cash flow is v`. An increase in µ1 reduces

the likelihood of the O-type issuer, and an increase in η1 reduces the likelihood of a low cash

flow. Therefore, both of these effects lead to reduced screening.

Observe that the price of the asset given a high rating increases in α̂. This price is just the

posterior probability that the asset has a high value, given a rating rh. In the single-period

model, therefore, an increase in α̂ leads directly to an increase in the informativeness of a high

rating.

3 Equilibrium

In this section, we solve for the perfect Bayesian equilibrium in the two-period case. In the

spirit of backward induction, we start with period 2. We then consider the optimal strategy

of the O-type issuer in period 1, keeping fixed the CRA’s screening intensity α1. Finally, we

turn to the optimal choice of α1.

3.1 Equilibrium Strategies in Period 2

Period 2 is the last period of the game, so the equilibrium strategies are similar to those in

the single-period case, characterized in Proposition 1. One important difference is that the
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prior belief of the CRA at the start of period 2 depends on the outcome observed in period 1.

Suppose the rating assigned in period 1 was ri and the cash flow at the end of the period was

vj , for i, j ∈ {h, `}. We let sij denote the state at the end of period 1 and µij2 the posterior

probability that the issuer has type H in state sij . Recall that ηi2 denotes the probability of a

high cash flow in period 2, given that the cash flow in period 1 was vi.

As in the one-period game, the H-type issuer always generates a truthful signal in the

second period, and the O-type issuer generates a truthful signal when the cash flow is vh and

manipulates with probability one when the cash flow is v`.

Lemma 1. Suppose that in period 2, the CRA’s screening intensity in state sij is αij2 < 1.

Then, in equilibrium, in state sij:

(i) The O-type issuer manipulates with probability one.

(ii) The price of the asset is pij2 =
ηi2

ηi2+(1−µij2 )(1−ηi2)(1−αij
2 )

if g2 = gh, and pij2 = 0 if g2 = g`.

(iii) The expected payoff of the O-type issuer in period 2 is πij2 = ηi2

(
1 +

µij2 (1−ηi2)(1−αij
2 )

ηi2+(1−µij2 )(1−ηi2)(1−αij
2 )

)
.

Given the best response of the issuer, the CRA in turn chooses a screening intensity based

on its prior belief at the start of period 2.

Lemma 2. In period 2, the CRA chooses the screening intensity α̂ij2 = φ(µij , ηi2) in state sij.

From Proposition 1, it follows that, in each state sij , there is a unique equilibrium in

period 2, characterized by the screening intensity α̂ij2 and by the fact that the O-type issuer

manipulates with probability one.

Now consider period 1. TheH-type issuer truthfully discloses the value of its asset. Suppose

the O-type issuer manipulates with some probability σ1 ∈ [0, 1], and for now suppose the CRA

and investors believe that the O-type issuer manipulates with probability σ̃1. Of course, in

equilibrium, it must be that σ̃1 = σ1. Recall that manipulation only has an effect on the CRA’s

signal if the asset has value v`. If the cash flow is vh, therefore, the CRA always obtains signal

gh and assigns rating rh. However, if the cash flow is v` and the O-type issuer manipulates,

the CRA sometimes errs and assigns a rating rh. The outcomes in period 1 and the associated

issuer and investor beliefs are specified in Table 1.
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State sij Events Probability Posterior

in period 1 belief µij2
shh rh, vh η1 µ1

sh` rh, v` (1− η1)(1− µ1)σ1(1− α1) 0
s`` r`, v` (1− η1)(1− (1− µ1)σ1(1− α1)) µ1

µ1+(1−µ1)(1−σ̃1(1−α1))

Table 1: Events and beliefs in period 1

The cash flow at the end of period 1 is observed by both the CRA and investors. To see

its effect on posterior beliefs, consider the case in which the cash flow is vh (state shh). Since

manipulation has no effect on the signal generated in this state, the posterior probability that

the issuer has type H is just µ1η1
µ1η1+(1−µ1)η1

= µ1. Conversely, in state sh`, the low cash flow

realization in conjunction with a high rating immediately reveals that the issuer is of type O.

Indeed, as we will show below, the fact that the issuer will be unmasked and revealed to be of

type O in state sh` is a key factor in the issuer’s choice of its optimal manipulation strategy

in period 1. Finally, in state s``, the rating r` is consistent with the observed cash flow v`.

Observe that µ``2 > µhh2 = µ1 > µh`2 . Thus, in state s``, the market revises its prior beliefs

upward.

3.2 Optimal Manipulation Strategy of the O-Type Issuer in Period 1

In this section, we fix the CRA’s screening intensity at time 1, α1, and describe the best

response of the issuer. The H-type issuer continues to generate a truthful signal; that is, it

generates signal gi when the cash flow is vi, for i ∈ {h, `}. Suppose that the CRA and investors

believe that the O-type issuer manipulates the signal with probability σ̃1. The price of the

asset in period 1 following a high rating rh depends on both α1 and σ̃1, and we write it as

p1(α1, σ̃1) = η1
η1+(1−η1)(1−µ1)σ̃1(1−α1) . When r1 = r`, the price in period 1 is zero.

Consider the best response of the O-type issuer. Suppose first that it is truthful with

probability one. There are two possible outcomes at the end of period 1. First, with probability

η1, the first-period cash flow is vh. In this case, the issuer obtains p1(α1, σ̃1) with probability

one. Entering period 2, the state is shh. Since the issuer will manipulate with probability one

at this time, its second-period payoff is πhh2 = (ηh2 + (1− ηh2 )(1− αhh2 )) phh2 , so that the overall

payoff in the game is Πh = p1(α1, σ̃1) + δ πhh2 . Second, with probability 1− η1, the first-period

cash flow is v`. The issuer obtains zero in period 1 and a payoff of π``2 = (η`2+(1−η`2)(1−α``2 )) p``2

in period 2. Note that p``2 depends on α1, σ̃1 and α``2 . The overall payoff in the game is δ π``2 .

12



Therefore, if the O-type issuer does not manipulate in period 1, its expected payoff in the game

is

Πn = η1Πh + δ(1− η1)π``2 . (2)

Next, suppose the O-type issuer manipulates with probability one. Again, with probability

η1 the first-period cash flow is vh and the firm obtains the two-period payoff Πh. If the first-

period cash flow is v`, there are two further possibilities. With probability α1, the CRA obtains

signal g` and assigns rating r`. This leads to a payoff of zero in period 1 and of π``2 in period

2. With probability 1 − α1, the CRA assigns rating rh. Then, the issuer obtains p1(α1, σ̃1)

in period 1. However, the state entering period 2 is sh`, and the issuer obtains an expected

payoff of πh`2 = η`2 in period 2 (Lemma 1 (iii)).8 Overall, if the O-type issuer manipulates in

period 1, its expected payoff is

Πm = η1Πh + (1− η1)
(
α1δπ

``
2 + (1− α1)(p1 + δπh`2 )

)
. (3)

It is optimal for the O-type issuer to manipulate if Πm ≥ Πn, that is, if p1(α1, σ̃1) ≥ δ(π``2 −
πh`2 ). If the issuer chooses to manipulate, there are three possibilities: (i) the realized cash flow

is vh (and therefore manipulation has no effect), (ii) the cash flow is v`, the manipulation is

unsuccessful, and the CRA assigns a rating r`, and (iii) the cash flow is v`, the manipulation

is successful, and the CRA assigns a rating rh. In the first two cases, the issuer obtains the

same payoff as in the case without manipulation. In the last case, the issuer gains p1(α1, σ̃1)

in period 1 by manipulating. However, its payoff in period 2 is reduced by π``2 − πh`2 , because

after manipulating the rating, the state entering period 2 is sh` rather than s``. Manipulation

is optimal if the gain p1(α1, σ̃1) outweighs the cost δ(π``2 − πh`2 ).

We show in Lemma 3 below that there is a threshold δ̄ such that it is optimal to manipulate

if δ ≤ δ̄. The threshold discount factor δ̄ depends on the likelihood of high cash flow, η1,

the prior probability that the firm is of type H, µ1, the market’s belief about the O-type

issuer’s strategy, σ̃1, and the screening intensity of the CRA in periods 1 and 2. The complete

expression for δ̄ is shown in equation (11) in the proof of Lemma 3.

Lemma 3. Fix the screening intensity of the CRA at time 1, α1, and consider the perfect

Bayesian equilibrium of the continuation game. Then, there exists a threshold δ̄ such that:

8Recall that in state sh`, the issuer is known to be of type O. That is, the prior belief at the start of period
2 that the issuer has type H is µh`

2 = 0. Therefore, the expected payoff of the O-type issuer in state sh`2 is just
η`2, and is independent of the screening intensity in that state, αh`

2 .
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(i) The O-type issuer’s best response is to manipulate if δ < δ̄ and to send a truthful sig-

nal if δ > δ̄. If δ = δ̄, the O-type issuer is indifferent between manipulating and not

manipulating.

(ii) δ̄ is strictly increasing in η1, α1 and α``2 . Further, as η`2 → 0 or η`2 → 1, δ̄ → ∞. That

is, the issuer manipulates with probability one in period 1.

Suppose the O-type issuer manipulates with probability one. Then, it sometimes succeeds

in obtaining a high rating when its cash flow is low. This leads to a higher payoff in period

1 than if it had been truthful and been assigned a low rating. However, at the end of period

1, investors observe a low cash flow, so the firm is now revealed as the O type. This results

in a reduced period-2 payoff. If, on the other hand, the issuer were truthful in period 1,

investors would assign a positive probability to the issuer being of type H, thereby increasing

the issuer’s period-2 payoff. Manipulation is worthwhile for the O-type issuer, if the discount

factor is sufficiently low (that is, if the firm is sufficiently impatient).

Now, fix α1 and consider the continuation game that follows after α1 has been chosen. Let

σ̂1 denote the level of manipulation by the O-type issuer in the equilibrium of this continuation

game. In this equilibrium, the beliefs of the CRA and investors must coincide with the actual

strategy of the O-type issuer, so that σ̃1 = σ̂1. We assume that δ is neither too low (otherwise

the issuer will not care about its second period payoff and will always manipulate in period

1) nor too high (otherwise the issuer will not care about its first period payoff and will never

manipulate).

Assumption 2. η1
1−η`2

< δ < 1
1−η`2

.

Note that 1
1−η`2

> 1, so we allow for the possibility that agents place greater weight on the

second period than on the first period.

We characterize the equilibrium of the continuation game in terms of σ̂1. We begin by

showing that the equilibrium is unique and that, under Assumption 2, the O-type issuer

manipulates the signal g1 with strictly positive probability.

Proposition 2. Fix α1 and consider the continuation game that follows.

(i) The continuation game has a unique perfect Bayesian equilibrium.
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(ii) In the equilibrium of the continuation game, the O-type issuer manipulates with strictly

positive probability in period 1, that is, σ̂1 > 0.

The intuition for part (ii) of the proposition is as follows. Suppose that investors conjecture

that the O-type issuer never manipulates. Then they would be willing to pay a high price

(specifically, a price of one) for the asset upon observing rating rh in the first period. This

creates a strong incentive for the O-type issuer to manipulate the signal g1 in an effort to get a

high rating. As long as the issuer cares sufficiently about the first-period cash flow (specifically,

as long as δ < 1/(1 − η`2)), it will manipulate, in contradiction to the investors’ conjecture.

Thus, in equilibrium it cannot be that σ̂1 = 0.

Proposition 2 implies that there are two possible types of equilibria in the continuation

game. The first type is characterized by σ̂1 = 1, that is, the O-type issuer manipulates

with probability one. In such an equilibrium, a small increase in α1 implies that the O-type

issuer continues to manipulate with probability 1. Conditional on having a low cash flow of

v` in period 1, the firm is successful at manipulation (that is, obtains a first-period rating

rh) with probability 1 − α1. This probability strictly decreases in α1. Therefore, in this

type of equilibrium, on average, the market’s posterior beliefs over firm types becomes more

informative as the screening intensity α1 increases.

In the second type of equilibrium, σ̂1 ∈ (0, 1). Here, we show that the O-type firm manip-

ulates with a greater probability when α1 increases (that is, σ̂1 increases in α1). Specifically,

the increased manipulation by the O-type firm exactly unwinds the effect of better screening

by the CRA in period 1: the probability of obtaining a rating rh in period 1 when the cash

flow is v` is invariant to small changes in α1.

Proposition 3. Fix α1 and consider the equilibrium of the continuation game in which σ̂1 ∈
(0, 1). Then:

(i) The O-type issuer manipulates with greater probability when α1 increases, that is, ∂σ̂1
∂α1

>

0.

(ii) Over some range of α1, the probability of obtaining a rating rh when the cash flow is v`

does not depend on α1, that is, (1− α1)σ̂1 is invariant to small changes in α1.
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Proposition 3 provides one of the key insights of this paper. The intuition behind part (i)

is as follows. For the O-type issuer, an increase in the screening intensity α1 has two effects.

First, it implies a greater payoff in period 1 if manipulation is successful (that is, if the issuer

obtains a rating rh even when its cash flow is low). Intuitively, a high rating by the CRA

provides certification to investors about the quality of the issuer’s asset, and the value of this

certification increases as the CRA’s screening intensity increases.

Second, an increase in α1 decreases the likelihood that manipulation is successful. Now,

if σ̂1 ∈ (0, 1), the O-type issuer is indifferent between manipulating and not manipulating.

Notice that if it manipulates and is unsuccessful, it obtains a payoff of zero in period 1, and

the realized state is s``. The same payoff and state are attained if it does not manipulate.

Therefore, for the issuer to be indifferent between manipulating and not manipulating, it

must also be indifferent between being successful and being unsuccessful at manipulation. In

equilibrium, this indifference is maintained for small changes in α1 (since σ̂1 then remains

between zero and one). Thus this second effect is neutral for small changes in α1. What

remains then is the first effect, an increase in the certification effect due to increased CRA

scrutiny. This effect leads to an increase in the probability of manipulation.

Part (ii) of the proposition directly implies that a small increase in the screening intensity

in period 1 has no effect on the quality of ratings. In particular, the probability that an issuer

with low cash flow survives the scrutiny of the CRA and obtains a high rating does not change.

An increase in α1 causes the opportunistic issuer to manipulate more often so that it exactly

offsets the effect of more screening by the CRA. As a result, the posterior distribution over

types is not affected by the increase in α1.

3.3 Optimal Screening Intensity in Period 1

We now turn to the CRA’s optimal choice of screening intensity in period 1, α̂1. Given the

results in Proposition 3, it seems useful to start by examining the conditions under which the

O-type issuer is indifferent between manipulating and not manipulating the signal g1. The

following lemma provides necessary and sufficient conditions for the existence of an interior

solution σ̂1 ∈ (0, 1).

Lemma 4. (i) Suppose η1
η1+(1−η1)(1−µ1) < δ(1 − η`2). Then, there exists an ᾱ ∈ (0, 1) such

that, in the equilibrium of the continuation game, σ̂1 ∈ (0, 1) if α1 < ᾱ and σ̂1 = 1 if

α ≥ ᾱ.
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(ii) Suppose η1
η1+(1−η1)(1−µ1) ≥ δ(1 − η`2). Then, for all α1 ≥ 0, σ̂1 = 1 in the equilibrium of

the continuation game.

The condition in Lemma 4 (i) is satisfied when η1 and µ1 are sufficiently low. For example,

if µ1 = 0, the condition becomes δ > η1
1−η`2

. As µ1 increases, the range of η1 for which the

condition holds shrinks. If µ1 = 1, the condition cannot be satisfied—it directly violates

Assumption 2. Similarly, if η1 = 0, the condition is always satisfied. As η1 increases, the range

of µ1 satisfying the condition shrinks, and at η1 = 1 it is violated for all µ1.

Now let ᾱ = 0 if the condition in part (ii) of Lemma 4 is satisfied. Then, it follows that

σ̂1 ∈ (0, 1) whenever α1 ∈ [0, ᾱ), and σ̂1 = 1 whenever α1 ∈ [ᾱ, 1]. In determining the optimal

choice of α1, we can therefore proceed in two steps. First, find the optimal α1 separately over

the regions [0, ᾱ) and [ᾱ, 1]. Then, find the overall optimum across the two regions.

First, consider the case in which α1 ∈ [0, ᾱ). Notice that the cost to the CRA in period 1

is

ψ1 = λ(1− η1)(1− µ1)σ1(1− α1) + c(α1). (4)

From Proposition 3 (ii), we know that a small change in α1 has no effect on the error probability,

but affects the screening cost c(α1) in period 1. Further, note that α1 only influences second-

period payoffs by altering either the probability of the different states or the posterior beliefs

about the type of the firm in each state. As Table 1 shows, α1 affects these quantities only

through the term σ1(1 − α1). Moreover, from Proposition 3, we know that σ1(1 − α1) is

invariant to small changes in α1. Therefore, the choice of α1 over this region has no effect on

any outcome variables in period 2. So the period-2 cost ψ2 is invariant to the choice of α1.

Therefore, it is immediate that, over this region, the optimal value of α1 is zero. Thus, the

CRA does not screen at all in period 1. The intuition for this result is that changes in α1 are

exactly offset by the issuer’s increased manipulation activity, so the CRA optimally saves on

screening costs by choosing α1 = 0.

Second, consider the case in which α1 ∈ [ᾱ, 1]. In this region, σ̂1 = 1. Therefore, increasing

α1 cannot exacerbate the issuer’s manipulation intensity. The optimal value of α1 is found by

a suitable first-order condition. The period-1 cost of the CRA is given by equation (4). In

period 2, there are three possible states, as shown in Table 1. The CRA’s period-2 cost in

state sij is given by

ψij2 = λ(1− ηj2)(1− µ1)(1− α̂ij2 ) + c(α̂ij2 ). (5)

Taking into account the probabilities over the states sij , the CRA’s expected cost over the two
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periods is

Ψ(α1) = ψ1 + δ
(
η1ψ

hh
2 + (1− µ1)(1− η1)(1− α1)ψh`2 + (1− (1− µ1)(1− η1)(1− α1))ψ``2

)
.

(6)

As we show in the proof of Lemma 5, the first-order condition yields the implicit equation

c′(α1) = λ(1− η1)(1− µ1)

[
1 + δ

(
c(α̂h`2 )− c(α̂``2 )

λ
− (1− η`2)(α̂h`2 − α̂``2 )

)]
. (7)

This is an implicit equation, because α̂``2 on the right-hand side is a function of α1. Denote

the solution to this equation by αh. We call αh the “heavy” screening intensity.

Lemma 5. The CRA’s optimal choice of α1 over the region [ᾱ, 1] is given by the heavy screen-

ing intensity αh.

Before characterizing the optimal screening intensity in period 1, we show that the heavy

screening level αh is always lower than α̂, the optimal screening intensity in the single-period

equilibrium. While not the focus of the paper, this comparison illustrates a trade-off that the

CRA faces when it chooses its screening level in period 1, even holding the issuer’s manipulation

decision fixed.

Proposition 4. The heavy screening intensity in the first period of the two-period game is

strictly lower than the optimal screening intensity in the single-period game, that is, αh < α̂.

Proposition 4 shows that, even at the heavy screening intensity, the CRA chooses to screen

less than in the single-period game. In the two-period game, screening in period 1 has a dual

role. First, it directly affects the error rate in the first period. Second, it affects the extent

to which the CRA learns about the integrity type of the firm. Knowledge about the integrity

type is valuable because it leads to more refined screening in period 2. Recall that the CRA

screens more intensely in period 2 when it believes that the firm is likely to be of type O (that

is, αh`2 > αhh2 > α``2 ). Now suppose (as we did in the calculation of αh) that the O-type issuer

manipulates with probability one. By choosing a lower screening level in period 1, the CRA

increases the likelihood that the issuer’s manipulation attempt in the first period is successful.

However, successful manipulation reveals that the firm is of type O. This allows the CRA
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to provide better screening in period 2. As a result, compared to the single-period case, the

intensity of screening is lower in the two-period case.

The overall optimal screening intensity in period 1, α̂1, may now be found as follows. If

ᾱ = 0, the optimal intensity is αh. If ᾱ > 0, the optimal intensity is equal to zero if Ψ(0) <

Ψ(αh), and equal to αh otherwise. The following proposition provides sufficient conditions for

the CRA to not screen in the first period.

Proposition 5. Suppose η1
η1+(1−η1)(1−µ1) < δ(1 − η`2). Then, there exists a λ̄ > 0 such that if

λ < λ̄, it is optimal for the CRA to choose a screening intensity of α̂1 = 0, whereas if λ > λ̄,

it is optimal to choose a screening intensity of α̂1 = αh. If η1
η1+(1−η1)(1−µ1) ≥ δ(1 − η`2), it is

always optimal for the CRA to choose α̂1 = αh.

Proposition 5 is another of the main results of the paper. Intuitively, it is optimal for the

CRA to abandon screening in period 1 if the reputational cost from errors is sufficiently low and

an additional condition on η1 and µ1 is satisfied. The condition on η1 and µ1 in Proposition 5

is the same as the condition in Lemma 4. As discussed earlier, it generally holds when η1 and

µ1 are both sufficiently low. It is important to note that the direct marginal cost of screening

is zero when there is no screening (since c′(0) = 0). Nevertheless, the endogenous strategic

response of the issuer to an increase in the screening level implies that not screening issuers

can be optimal for the CRA.

The parameter λ can be interpreted as a measure of market discipline imposed on the CRA.

If the market penalizes the CRA for mistakes, λ is high; otherwise, λ is low. Further, one can

expect λ to be low in situations in which the market does not learn the value of the asset at

the end of period 1, or learns this value with noise. In such situations, the CRA will reduce

the screening intensity in period 1.

Proposition 5 implies that when the probability of a high cash flow, η1, is low, it is optimal

to not screen in period 1. This is in stark contrast to the single-period case in which the

screening intensity strictly increases as η1 decreases. The intuition is that when η1 is low, the

benefit to the O-type issuer of manipulating the signal g1 is also low. Therefore, for a wide

range of parameter values of α1, the O-type issuer manipulates only partially (that is, with

a probability of less than one). As a result, over this range, increases in α1 only encourage

further manipulation. From Proposition 3, we know that a small increase in the screening

intensity when σ̂1 ∈ (0, 1) does not affect the probability that the CRA makes an error in the
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first period or the probability distribution of states in the second period. Thus, an increase in

α1 does not benefit the CRA. As screening is costly, it is therefore optimal to not screen.

Observe that even when the screening intensity in period 1 is zero, the credit rating is still

informative about the value of the asset. This is because the honest issuer always discloses the

value of its asset truthfully. Specifically, when α1 = 0, the posterior probability that the asset

has high value when the CRA receives a high signal is η1
η1+(1−η1)(1−µ1)(1−σ1) > η1. Conversely,

when the CRA receives a low signal, the asset has a low value for sure.

3.4 Comparative Statics

We explore the comparative statics of the optimal screening intensity in period 1, α̂1, in a

series of numerical examples.

Example 1: Changes in η1 and µ1.

Let δ = 1, λ = 0.4 and c(α) = α2. We vary η1 and µ1 and determine the optimal level of

α1. For simplicity, we assume that ηh2 = η`2 = η1 (i.e., there is no persistence in asset values).

Comparative statics with respect to µ1.

First, we set η1 = ηh2 = η`2 = 0.3 and determine the optimal screening intensity in period

1 and the equilibrium strategy of the O-type issuer as a function of µ1. The results are

displayed in Figure 2. Given these parameter values, the condition η1
η1+(1−η1)(1−µ1) < δ(1− η1)

is equivalent to µ1 > 0.8183.

We find that for µ1 ∈ [0.17, 0.82], the CRA optimally chooses to not screen in period 1 (i.e.,

α̂1 = 0). When µ1 < 0.17 or µ1 > 0.82, the CRA chooses the heavy screening level αh. The

intuition is as follows. When µ1 is low, there is little opportunity for O-type issuers to pool

with H-type issuers in the second period. Thus, the O-type issuer’s incentive to refrain from

manipulation in the first period is weak, and it manipulates with high probability (possibly

one) even if the screening intensity is low. The CRA’s choice of α1 has little effect on the

issuer’s behavior in this case, so it chooses a relatively high α1 in order to better screen out

O-type issuers.

When µ1 is high, the benefit from manipulation is high, as, conditional on observing a high

rating rh, investors place high weight on the issuer being of type H and therefore on the asset

having a high value. Again, the O-type issuer manipulates with high probability (possibly one)

even if α1 is low, and so the CRA chooses a positive α1 to screen out some O-type issuers.
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For this figure, we set δ = 1, λ = 0.4, c(α) = α2, and η1 = 0.3. We then determine the optimal α1 and
corresponding σ1 as µ1 changes.

Figure 2: The optimal screening intensity, α̂1, and the equilibrium strategy of the O-type
issuer, σ̂1, as a function of µ1

Notice that for both low and high values of µ1, the CRA chooses a screening intensity high

enough to ensure that the O-type issuer manipulates with probability 1 in the first period.

For intermediate values of µ1, it is costly for O-type issuers to be exposed in period 1, and

the gains from successfully manipulating the signal are limited. Therefore, an O-type issuer

manipulates only partially for a wide range of parameter values of α1. In this case, increases

in α1 are offset by more manipulation, leading the CRA to optimally choose α̂1 = 0. Given

the lack of screening, in equilibrium the O-type issuer manipulates with probability close to

(but strictly less than) 1 in the first period. It is a general feature of our base model that in

the first period, in equilibrium the O-type issuer manipulates with probability 1 if and only if

the CRA has chosen a non-zero screening intensity.

Comparative statics with respect to η1.
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Next, we set µ1 = 0.5 and consider variations in η1. Given these parameter values, the

condition η1
η1+(1−η1)(1−µ1) < δ(1−η1) reduces to η1 <

√
2−1 ≈ 0.4142. We numerically compute

the optimal value of α1 for η1 ∈ [0, 1]. From Proposition 5, we know that if η1 > 0.4142, the

optimal value of α1 is αh > 0. If η1 < 0.4142, the optimal level depends on whether or not

λ < λ̄.
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For this figure, we set δ = 1, λ = 0.4, c(α) = α2, and µ1 = 0.5. We then determine the optimal α1 as
η1 changes.

Figure 3: The optimal screening intensity α̂1 as a function of η1

We find that if η1 < 0.38, the CRA optimally chooses to not screen (i.e., α̂1 = 0). If

η1 > 0.38, the CRA optimally chooses heavy screening (i.e., α̂1 = αh). The intuition is that

when η1 is low, the benefit from manipulation to the O-type issuer is low, so all else equal, the

issuer manipulates less. However, as η1 increases, the benefit from manipulation increases and,

given the parameter values, at η1 ≈ 0.38, the issuer manipulates with probability one. At this

point, increasing α1 does not lead to a further increase in σ̂1, so the CRA chooses a strictly

positive screening intensity. As a result, at η1 ≈ 0.38, α̂1 jumps discretely from 0 to about
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0.06. Thereafter, it falls in η1, as expected. Note also that αh < α̂, where α̂ is the optimal

screening level in the one-period game.

These results are displayed in Figure 3. We do not show the σ̂1, the optimal strategy of the

O-type issuer in period 1. It remains the case that when α̂1 > 0, the O-type issuer manipulates

with probability 1 in the first period, and when α̂1 = 0, it manipulates with probability strictly

less than 1.

Example 2: Effects of persistence in asset quality.

Let η1 = 0.3, δ = 1, λ = 0.4 and c(α) = α2. We examine the CRA’s optimal first period

screening intensity, α̂1, for different values of µ1 when ηh2 = 0.3 (no persistence) and when

ηh2 = 0.6 (strong persistence).
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For this figure, we set δ = 1, λ = 0.4, c(α) = α2, and η1 = 0.3. We then determine the optimal α1 as
µ1 changes.

Figure 4: The optimal screening intensity α̂1 as a function of µ1 in the case with and without
persistence in asset quality

As shown in Figure 4, the optimal screening intensity remains zero for a large set of inter-

mediate values of µ1. When it is nonzero, it mostly matches the optimal screening level in the
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no-persistence case.

Persistence in asset quality has different effects on the issuer’s and the CRA’s strategy.

Holding fixed the CRA’s screening intensity in period 1, persistence implies that the O-type

issuer is more likely to manipulate in period 1. Recall that the O-type issuer manipulates

if p1(α1, σ̃1) ≥ δ(π``2 − πh`2 ). Persistence implies that, after a low outcome in period 1, the

probability of a high outcome in period 2 is low. This reduces the difference in payoffs between

the states s`` and sh` in period 2, making manipulation more profitable.

Holding fixed the strategy of the O-type issuer, persistence in asset quality makes it more

valuable for the CRA to smoke out the O-type issuer so that it can fine tune its screening level

in period 2. This requires the screening intensity in period 1 to be low, because the O-type

issuer is only caught if it successfully manipulates the signal g1 (i.e., if it obtains a high rating

when its cash flow is low).

These countervailing forces result in screening strategy shown in Figure 4. The broad

pattern is similar to the pattern in the case without persistence, with no screening over a large

intermediate range of values for µ1. For low values of µ1 (in the figure, between 0.17 and 0.23),

the CRA is willing to engage in heavy screening to encourage the O-type issuer to manipulate

with probability one. For some high values of µ1 (in the figure, between 0.81 and 0.91), it is

optimal to abandon screening in period 1.

4 Extensions

In this section, we consider two extensions to the basic model. First, we consider the case in

which the CRA commit to (state-dependent) screening intensities at the beginning of period

1. Second, we add a small direct cost of manipulation for the O-type issuer and examine its

effects on the equilibrium.

4.1 Commitment to Screening Intensity in Period 2

Suppose that the CRA can commit to a screening intensity in each state at the beginning of

period 1. What effect does this commitment have on the manipulation probability of the O-

type issuer? Consider an equilibrium in which the O-type issuer manipulates with a probability

of less than one in period 1. We show that an increase in the screening intensity in state s``

leads to an increase in σ̂1. However, changes in the screening intensity in the other two states

leave σ̂1 unchanged.
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Proposition 6. Suppose that the CRA’s period-2 state-contingent screening intensities are

known at the beginning of period 1 and consider an equilibrium in which σ̂1 ∈ (0, 1). Then, σ̂1

increases in the screening intensity in state s``, and is independent of the screening intensities

in states sh` and shh. That is, ∂σ̂1
∂α``

2
> 0 and ∂σ̂1

∂αh`
2

= ∂σ̂1
∂αhh

2
= 0.

An increase in α``2 decreases the payoff of the O-type issuer in state s``, directly increasing

his incentive to manipulate the signal g1 in period 1. This result complements the result

in Proposition 3 that when the O-type issuer is indifferent between manipulating and not

manipulating, an increase in α1 increases the probability of manipulation. A change in αhh

has no effect on the extent of manipulation in period 1. This is because manipulation itself

has no effect if the first-period cash flow is vh. Finally, in state sh`, the issuer is known to be

of type O. Therefore, the issuer’s expected payoff in period 2 is η`2, regardless of the screening

intensity in that state. As a result, changes in the screening intensity do not affect σ̂1.

One implication of this result is that, if the CRA can commit to its period-2 screening

intensities in advance, it will choose to screen with a lower intensity in state s``, as compared

to the no-commitment case. It chooses the same screening intensities in states sh` and shh as

it does without commitment.

4.2 Manipulation Cost for O-type Issuer

The cost of manipulation arises endogenously in the model as a result of the issuer’s reputa-

tional concerns. We now consider the possibility of a small direct cost that the opportunistic

issuer incurs if it manipulates the CRA’s signal. This cost could represent the time and effort

involved in manipulation, as well as any distortions in issuer policy required to carry out the

manipulation.

First, suppose that the game only lasts one period and that all issuers are opportunistic,

so that the direct cost is the only cost of manipulating (i.e., there is no reputational cost).

Like a reputational cost, the direct cost would constrain the issuer’s incentive to manipulate.

However, with only the direct cost, the equilibrium probability that the issuer manipulates

decreases rather than increases with the CRA’s screening intensity.9 This result is reversed

in our base model because the opportunistic type incurs a cost whenever it is successful in

manipulating, in the form of a lower payoff in period 2. Thus the endogenous reputational cost

of manipulation is key to the paper’s results.

9Details of this case are omitted for brevity.
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Next, we return to our base model with two periods with endogenous reputational costs.

Suppose that, in addition, the O-type issuer incurs a small direct cost of manipulation, m.

The manipulation cost has effects on the outcomes in both periods. In period 2, if ηi2 is low,

the O-type issuer plays a mixed strategy and manipulates with a probability of less than one,

because the potential benefit from manipulation is low. The manipulation cost reduces the

period-2 payoff by σij2 m, where σij2 is the equilibrium manipulation probability in state sij .

For high values of ηi2, the O-type issuer continues to manipulate with probability one in period

2, regardless of the realized state. In this case, the difference π``2 − πh`2 remains unchanged.

However, the benefit of manipulation in period 1 falls to p1(α1, σ̃1) −m, so that the O-type

issuer is less likely to manipulate. This results in an increase in the parameter range for which

the low screening level is optimal.

Consider equilibria in which the O-type issuer mixes between manipulation and truth-

telling in period 1. If the manipulation cost is sufficiently small, an increase in the screening

intensity α1 again leads to an increase in the probability of manipulation, σ̂1. However, the

increase in σ̂1 is smaller than it would be in the absence of a manipulation cost, so that the

optimal screening intensity is no longer zero. Instead, the CRA chooses a small but positive

screening intensity in this parameter range.

Example 3: Manipulation cost for the O-type issuer

As before, we set η1 = 0.3, δ = 1, λ = 0.4, and c(α) = α2. For simplicity, we assume that

ηh2 = η`2 = η1 (i.e., there is no persistence in asset quality). We examine the CRA’s optimal

first-period screening intensity, α̂1, for different values of µ1 when m = 0 (no direct cost of

manipulation) and when m = 0.2 (a substantial direct cost of manipulation).

As shown in Figure 5, the range of values of µ1 for which a low screening intensity is

optimal increases from [0.17, 0.81] (when m = 0) to [0.05, 0.95] (when m = 0.2). Further, the

low screening level is strictly positive, being about 0.023 when µ1 = 0.15.

5 Empirical Implications

We now discuss some empirical implications of our model. First, suppose that there is an

exogenous increase in the intensity of screening by the CRA at a given time. Such an increase

could be triggered by regulatory changes or short-term political pressure that might correspond

to an increase in the λ parameter in the model. Our model predicts that there will be weakly

more manipulation by issuers, that is, more observed attempts by issuers to game the ratings
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Figure 5: Effect of changing µ1 on α1 with and without the O-type incurring a cost of manip-
ulation

system. Such gaming may be observable after the fact through sources such as regulatory

audits and court records.

Second, suppose that there is an expectation that the screening intensity of the CRA

will change in the future. For example, new online technologies may improve computing and

communications, making it easier to analyze and transfer information. This reduces the CRA’s

cost of obtaining and scrutinizing information from the issuer. Our model predicts that an

increase in future screening intensity will also lead to weakly more manipulation by the issuer

today.

Our model also has implications for rating agencies’ screening decisions and the accuracy

of credit ratings. Our analysis implies that a CRA should exert less effort scrutinizing new

issues when it rates new assets or when new issuers are numerous. As Figure 2 shows, the

CRA abandons screening in period 1 when it is sufficiently unsure about the type of the issuer
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(that is, when µ1 takes intermediate values rather than values close to 0 or 1). In practice,

a CRA will be unsure about the issuer type either when it is rating a new class of securities

(so the ability of the issuer to manipulate information is unknown) or when there is a flood of

new issuers on the market. This could explain why CRA ratings of mortgage-backed securities

in the 2000s appear to have been more lax than those of corporate issuers. Note also that

our model predicts discontinuous jumps as µ1 changes. So, starting from intermediate beliefs

about the issuer’s type, small amounts of learning can lead to large positive jumps in observed

CRA scrutiny.

One way to interpret the CRA’s screening intensity is in terms of the transparency of

the ratings process. The key feature of screening in our model is to make manipulation less

likely to succeed. A more transparent process is easier for an issuer to manipulate, either by

distorting information or by slightly changing the financial claim being issued to meet minimum

requirements for a higher rating. Rating transparency does vary over time. For example, in

the 2000s, S&P was relatively transparent about the ratings model it used for mortgage-

backed securities (see, for example, the description in Griffin and Tang (2011)). Thus, rating

transparency may be a useful proxy for the extent of CRA screening.

Our next prediction addresses changes in the CRA’s screening intensity over time. Our

analysis shows that screening intensity of a new issuer or new class of securities should increase

over time. In the model, the CRA screens intensely in the second period because it is the

final period of the game: there are no future periods over which the issuer has reputational

concerns. In reality, there is generally not a pre-determined terminal period beyond which an

issuer ceases to sell assets. However, the CRA learns about the issuer over time as it rates more

of the issuer’s securities and observes their realized values. As a result of this learning process,

the weight that the CRA places on the issuer being honest will tend towards either zero or

one over time. Thus, even if one treats the first period as always being the current period

(as opposed to comparing periods 1 and 2), the CRA’s screening intensity should increase

over time as it learns more about the issuer’s type. This is a sharp prediction, as one would

generally expect more intense screening with newer classes of assets about which less is known.

Finally, our model predicts that CRA screening will be more intense when expected asset

quality is high (see Figure 3). This implication must be interpreted carefully, as ratings in our

model are binary (high or low). In reality, ratings scales tend to have many values. However,

certain thresholds tend to particulary salient for certain types of securities. For example,

mortgage-backed securities issuers focus on obtaining AAA ratings. Thus one can imagine
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that splitting rating categories into AAA and non-AAA captures much of the distinction in

MBS quality. The inability of many institutions to hold non-investment grade securities creates

a natural split in the corporate bond market. According to our model, CRA scrutiny should

be more intense when the “correct” rating for a security is likely to be just above the threshold

than when it is likely to be just below the threshold.

6 Conclusion

We argue that strategic disclosure by issuers is an important friction to consider in the ratings

process. Our broad message is that the quality of credit ratings depends both on the quality

of screening and on the type and discloser strategy of the issuer. With an honest issuer, the

CRA can glean the quality of an asset with little effort, so accurate ratings will obtain with

little contribution from the CRA. Once an issuer is known to be opportunistic, a CRA will

provide intensive screening, but the quality of ratings will remain somewhat noisy because the

issuer attempts to manipulate the information revealed. In-between, while the CRA is trying

to learn more about issuer type, it provides little screening and ratings are even noisier.

In our model, information manipulation by an opportunistic issuer can sometimes com-

pletely unwind the effect of better screening by a credit rating agency. The result is that

better screening may simply lead to a greater cost for the CRA without a corresponding ben-

efit in terms of more informative credit ratings. In dealing with a new issuer, it is optimal to

reduce screening to allow the CRA to learn about the type of the issuer, and allow the market

to generate information about the quality of assets through time. We should therefore expect

that screening intensity for new issuers and assets is low for some period of time.
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Appendix: Proofs

Proof of Proposition 1

First, we show that the strategies exhibited for the CRA and the O-type firm are mutual

best responses, given that the beliefs of investors satisfy Bayes’ rule. We then show that the

equilibrium is unique.

(i) Given the strategies of the H and O type firms, the CRA chooses α to minimize λ(1 −
µ1)(1− η1)(1− α) + c(α). The first-order condition is c′(α) = λ(1− µ1)(1− η1), which yields

α̂ = φ(µ1, η1). Assumption 1 implies that α̂ < 1. As c(·) is strictly convex, the second-order

condition is satisfied.

(ii) The H-type issuer always reports truthfully, by assumption. Consider the strategy of the

O-type issuer. Suppose it manipulates with probability σ. As shown in the text, its payoff can

be written as

πO = [η1 + (1− η1)σ(1− α)]ph + (1− η1)(1− σ(1− α))p` (8)

= η1p
h + (1− η1)p` + σ(1− α)(ph − p`). (9)

Given the strategy of the CRA, ph = η1
η1+(1−η1)(1−µ1)(1−α̂) > p` = 0. Therefore, it is immediate

that σ = 1 is a best response.

(iii) The pricing rule for the asset follows from the strategies of the CRA and issuer, and the

fact that investors are competitive so the asset is priced at fair value.

Finally, suppose there is some other perfect Bayesian equilibrium. Since the issuer plays a

strict best response given α̂, it must be that in the other equilibrium the CRA chooses some

other level of α, say α̃. Suppose the O-type issuer manipulates with probability σ̃. Then, the

price of the asset given a high signal is p̃h = η1
η1+(1−η1)(1−µ1)σ̃(1−α̃) > 0, and the price given

a low signal is p̃` = 0. Therefore, it is again a strict best response for the O-type issuer to

manipulate with probability 1. But if the O-type issuer manipulates with probability 1, α̂ is a

unique best response. Therefore, there is no other perfect Bayesian equilibrium.

Proof of Lemma 1

(i) Consider any state sij , and suppose the O-type issuer manipulates with probability σ. Then,

the price of the asset at time 2 in that state following a high rating is pij2 =
ηi2

ηi2+(1−ηi2)(1−µij2 )σ(1−αij
2 )

.
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Since a low rating always corresponds to a low cash flow, the price of the asset following a low

rating is 0.

Now, if the cash flow is high, manipulation has no effect and a high rating is generated, so

the O-type issuer earns pij2 . Suppose the cash flow is low. In each state sij , we have µij2 < 1

(from Table 1) and αij2 < 1 (by assumption in the statement of the lemma). Therefore, pij2 > 0.

The O-type issuer earns (1−αij2 )pij2 > 0 by manipulating, and 0 from being truthful. Therefore,

it is optimal to manipulate with probability 1.

(ii) The price of the asset in each state follows from setting the manipulation probability of

the O-type issuer to 1.

(iii) The O-type issuer earns the price with probability ηi2+(1−ηi2)(1−αij2 ). Therefore, its payoff

is (ηi2 +(1−ηi2)(1−αij2 ))
ηi2

ηi2+(1−µij2 )(1−ηi2)(1−αij
2 )

+(1−ηi2)αij2 ×0 = ηi2

(
ηi2+(1−ηi2)(1−αij

2 )

ηi2+(1−µij2 )(1−ηi2)(1−αij
2 )

)
=

ηi2

(
1 +

µij2 (1−ηi2)(1−αij
2 )

ηi2+(1−µij2 )(1−ηi2)(1−αij
2 )

)
.

Proof of Lemma 2

The proof mirrors the proof of Proposition 1 part (i). In state sij2 , the CRA believes that

the probability of the issuer having the H-type is µij2 . Suppose the CRA chooses a screening

intensity α. The H-type issuer always reports truthfully, and from Lemma 1, the O-type issuer

manipulates with probability 1. Given these strategies, an error occurs only if the CRA assigns

a rating rh and the cash flow is v`. The probability of this event is (1 − µij2 )(1 − ηi2)(1 − α).

Therefore, the CRA optimally chooses

α̂ij2 = arg min
α

λ(1− µij2 )(1− η1)(1− α) + c(α).

The first-order condition yields c′(α) = λ(1− µij2 )(1− η1), so that α̂ij2 = φ
(
µij2 , η

i
2

)
. As c(·) is

convex, it is immediate that the second-order condition is satisfied.

Proof of Lemma 3

(i) It is optimal for the type O issuer to manipulate when Πm ≥ Πn; that is, when p1(α1, σ̃1) ≥
δ(π``2 −πh`2 ). Further, we have p1 = η1

η1+(1−η1)(1−µ1)σ̃1(1−α1) , π``2 = η`2

(
1 +

µ``2 (1−η`2)(1−α``
2 )

η`2+(1−µ``2 )(1−η`2)(1−α``
2 )

)
,

and πh`2 = η`2. Therefore, π``2 − πh`2 =
µ``2 η

`
2(1−η`2)(1−α``

2 )

η`2+(1−µ``2 )(1−η`2)(1−α``
2 )

.

Making the relevant substitutions, manipulation is strictly preferable if

δ × µ``2 η
`
2(1− η`2)(1− α``2 )

η`2 + (1− µ``2 )(1− η`2)(1− α``2 )
<

η1

η1 + (1− η1)(1− µ1)σ̃1(1− α1)
. (10)
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Define δ̄ as follows. Notice that δ̄ depends on η1, µ1, σ̃1, α1 and α``2 .

δ̄ =
η1[η`2 + (1− µ``2 )(1− η`2)(1− α``2 )]

[η1 + (1− η1)(1− µ1)σ̃1(1− α1)]µ``2 η
`
2(1− η`2)(1− α``2 )

(11)

It is now immediate that manipulation is strictly preferable when δ < δ̄, and truth-telling is

strictly preferable when δ > δ̄.

(ii) Consider the expression for δ̄ in equation (11). Recall that µ``2 = µ1
µ1+(1−µ1)(1−σ̃1(1−α1))

is independent of η1 and α``2 . Then, by inspection, δ̄ is increasing in η1 and α``2 . Further, as

η`2 → 0 the second term in the large parentheses goes to infinity, with all other terms remaining

finite in each case. Therefore, δ̄ →∞. When η`2 → 1, it is important to recognize that η`2 ≤ η1

implies that η1 → 1 as well. Under these conditions, the first term in the large parentheses

goes to ∞ while all other terms remain finite, so again δ̄ →∞.

Finally, consider changes in α1. Notice that µ``2 is decreasing in α1. We can write δ̄ =

A(µ``2 , α
``
2 , η

`
2) η1

η1+(1−η1)(1−µ1)σ̃1(1−α1) , where A(µ``2 , α
``
2 , η

`
2) is decreasing in µ``2 , and therefore

increasing in α1, and the term η1
η1+(1−η1)(1−µ1)σ̃1(1−α1) is also increasing in α1. Therefore, δ̄ is

increasing in α1.

Proof of Proposition 2

(i) Fix α1, and let σ̂1 denote a strategy for the type-O issuer played in a perfect Bayesian

equilibrium of the continuation game. Define G(σ1) = p1(σ1, α1) − δ(π``2 − η`2), where π``2 in

turn depends on σ1. Substituting in for p1 and π``2 , we can write

G(σ̂1) =
η1

η1 + (1− η1)(1− µ1)σ̂1(1− α1)
− δη`2(1− η`2)(1− α̂``2 )µ``2
η`2 + (1− η`2)(1− µ``2 )(1− α̂``2 )

, (12)

where α̂``2 represents the equilibrium screening intensity of the CRA at time 2 in state s``. We

show that G(·) is strictly decreasing in σ̂1. It is immediate that the first term on the RHS of

equation (12) is decreasing in σ̂1. Consider the second term on the RHS, and ignore the minus

sign for now. The derivative of this term with respect to µ``2 is

δη`2(1− η`2)
(
η`2(1− α̂``2 ) + (1− η`2)(1− µ``2 )(1− α̂``2 )2 − η`2µ``2

dα̂``
2

dµ``
2
{1− (1− η`2)(1− µ``2 )(1− α̂``2 )}

)
(η`2(1− α̂``2 ) + (1− η`2)(1− µ``2 )(1− α̂``2 ))2

Note that α̂``2 = φ(µ``2 , η
``
2 ) is a decreasing function of µ``2 . Since α̂``2 is strictly decreasing

in µ``2 and α̂``2 < 1, it follows that the second term on the RHS of equation (12) is strictly
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increasing in µ``2 . Now, recall that µ``2 = µ1
µ1+(1−µ1)(1−σ̂1(1−α1)) is strictly increasing in σ̂1. It

then follows that the second term on the RHS of equation (12), ignoring the minus sign, is

strictly increasing in σ̂1. That is, taking account of the minus sign, this term too is strictly

decreasing in σ̂1. Therefore, G(·) is strictly decreasing in σ̂1.

As G(·) is strictly decreasing in σ̂1, it follows that in equilibrium σ̂1 = 0 only if G(0) ≤ 0,

σ̂1 = 1 only if G(1) ≥ 0, and σ̂1 ∈ (0, 1) only if G(σ̂1) = 0. Because G(·) is strictly decreasing

in σ̂1, the equilibrium is unique.

(ii) Suppose that, in an equilibrium of the continuation game after α1 has been chosen, σ̂1 = 0.

Then, it must be that σ̃1 = 0 as well. Then, µ``2 = µ1. Consider the expression for δ̄ in equation

(11). Substituting in σ̃1 = 0 and µ``2 = µ1, we have

δ̄ =
1

(1− η`2)(1− α``2 )
.

Now, from Assumption 2, δ < 1
1−η`2

and from Assumption 1, α``2 < 1. Therefore, it follows

that δ < δ̄ for all values of µ1, so that from Lemma 3, it is a best response for the firm to

manipulate with probability 1. That is, there cannot be an equilibrium of the continuation

game in which σ̂1 = 0, so that in any continuation equilibrium σ̂1 > 0.

Proof of Proposition 3

(i) Suppose that for a given α1, σ̂1(α1) ∈ (0, 1). Then, recalling the definition of G(σ̂1) in

equation (12) in the proof of Proposition 2, it must be that G(σ̂1) = 0. Denote z = σ̂1(1−α1).

Notice that µ``2 = µ1
µ1+(1−µ1)(1−z) , which we write as µ``2 (z). This further implies that α̂``2 is a

function of z. Substituting z = σ̂1(1− α1) into the expression for G(σ̂1) in equation (12) and

setting G(σ̂1) = 0, we have

η1

η1 + (1− η1)(1− µ1)z
=

δη`2(1− η`2)(1− α̂``2 (z))µ``2 (z)

η`2 + (1− η`2)(1− µ``2 (z))(1− α̂``2 (z))
. (13)

In the proof of Proposition 2 (i), we have shown that the term on the RHS of equation

(13) is strictly increasing in µ``2 . Further, µ``2 (z) is strictly increasing in z, so that the RHS of

equation (13) is strictly increasing in z. The LHS is clearly decreasing in z.

Observe that α1 and σ̂1 do not directly affect equation (13), except through z. Suppose

σ̂1 ∈ (0, 1) so that equation (13) holds for some z = ẑ. As the left-hand side is strictly

decreasing in z and the right-hand side is strictly increasing, it follows that ẑ is a unique

solution to equation (13). Now, consider a small change in α1. As ẑ is unique, it follows
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that the change in α1 cannot change ẑ. By construction, it must be that σ̂1 is such that

(1−α1)σ̂1 = ẑ and σ̂1 ∈ [0, 1] is an equilibrium strategy for type O. Consider any α1 such that

the equilibrium mixing probability σ̂1 lies in (0, 1). It follows that σ̂1(α1) = ẑ
1−α1

is strictly

increasing in α1.

(ii) For the O-type issuer, the probability of obtaining a rating rh when the cash flow is v` is

(1− α1)σ̂1. Consider any equilibrium in which σ̂1(α1) ∈ (0, 1). Then, equation (13) holds for

some ẑ. As mentioned in the proof of part (i), ẑ is invariant to changes in α1; that is, (1−α1)σ̂1

is invariant to small changes α1 (if there is a large change in α1, then the type O-firm may no

longer be indifferent between manipulating and truthful disclosure).

Proof of Lemma 4

As in the proof of Proposition 3, define z = σ̂1(1−α1). Let f(z) = η1
η1+(1−η1)(1−µ1)z and let

g(z) =
δη`2(1−η`2)(1−α̂``

2 (z))µ``2 (z)

η`2+(1−η`2)(1−µ``2 (z))(1−α̂``
2 (z))

. It is immediate that f(z) is strictly decreasing in z and in

the proof of Proposition 3, we have shown that g(z) is strictly increasing in z.

Now, there are two possibilities:

(i) f(1− α1) > g(1− α1). In this case, G(σ1) > 0 for any σ1 ∈ [0, 1], where G(σ1) is defined

in the proof of Proposition 3, so in equilibrium σ̂1(α1) = 1.

(ii) There exists a ẑ ∈ (0, 1−α1] such that f(ẑ) = g(ẑ). Then, in equilibrium σ̂1(α1) = ẑ
(1−α1) .

Now, Proposition 2 implies that f(0) > g(0). Observe that f(1) = η1
η1+(1−η1)(1−µ1) . Further,

µ``2 (1) = 1 and α̂``2 (1) = 0. Therefore, g(1) = δ(1− η`2). Therefore, if

η1

η1 + (1− η1)(1− µ1)
≥ δ(1− η`2), (14)

it follows that for any α1 ≥ 0, in equilibrium σ̂1(α1) = 1, proving part (ii) of the Lemma.

For part (i), suppose instead, that

η1

η1 + (1− η1)(1− µ1)
< δ(1− η`2). (15)

Then, there exists some ẑ ∈ [0, 1] such that f(ẑ) = g(ẑ). Define αa = 1− ẑ. Then, by definition

σ̂1(αa) = 1. Further, as the function ẑ
1−α1

is increasing in α1, it follows σ̂1(α1) ∈ (0, 1) for all

α1 < αa and σ̂1(α1) = 1 for all α1 > αa.

Proof of Lemma 5
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The objective function of the CRA is Ψ = ψ1 + δψ2. Taking an expectation over states at

time 2, we have

Ψ = ψ1 + δ{η1ψ
hh
2 + (1− η1)[(1− µ1)σ1(1− α1)ψh`2 + (1− (1− µ1)σ1(1− α1))ψ``2 ]}.(16)

Here,

ψhh2 = λ(1− ηh2 )(1− µ1)(1− φ(µ1)) + c(φ(µ1))

ψh`2 = λ(1− η`2)(1− φ(1)) + c(φ(1)).

That is, neither ψhh2 nor ψh`2 depend on σ1 or on α1.

Further,

ψ``2 = λ(1− η`2)(1− µ``2 )(1− α̂``2 ) + c(α̂``2 ).

For the rest of this proof, for convenience we write α``2 for α̂``2 . Also, recall that µ``2 = 1 −
µ1

µ1+(1−µ1)(1−σ1(1−α1)) .

Using z = σ̂1(1− α1), we can write

Ψ = c(α1) + λ(1− η1)(1− µ1)z

+δη1ψ
hh
2 + δ(1− η1){(1− µ1)zψh`2 + (1− (1− µ1)z)ψ``2 (z)]}.

We now have ∂Ψ
∂α1

= c′(α1) + ∂Ψ
∂z

∂z
∂α1

. Consider the term ∂Ψ
∂z . We have

∂Ψ

∂z
= λ(1− η1)(1− µ1) + δ(1− η1)(1− µ1){ψh`2 − ψ``2 }+ δ(1− η1){1− (1− µ1)z}∂ψ

``
2

∂z
.(17)

Now,

∂ψ``2
∂z

= c′(α``2 )
∂α``2
∂z
− λ

(
(1− η`2)

(
1− µ1

µ1 + (1− µ1)(1− z)

))
∂α``2
∂z

−λ(1− η`2)
µ1(1− µ1)

[µ1 + (1− µ1)(1− z)]2
(1− α``2 ). (18)

Recall that α``2 satisfies c′(α``2 ) = λ(1 − η`2)
(

1− µ1
µ1+(1−µ1)(1−z)

)
, so we can simplify

∂ψ``
2

∂z =

−λ(1− η`2) µ1(1−µ1)
[µ1+(1−µ1)(1−z)]2 (1− α``2 ).
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Substituting into equation (17), we get

∂Ψ

∂z
= λ(1− η1)(1− µ1) + δ(1− η1)(1− µ1){ψh`2 − ψ``2 }

−λδ(1− η1){1− (1− µ1)z}(1− η`2)
µ1(1− µ1)

[µ1 + (1− µ1)(1− z)]2
(1− α``2 ).

Note that µ1 + (1− µ1)(1− z) = 1− (1− µ1)z. Therefore,

∂Ψ

∂z
= λ(1− η1)(1− µ1) + δ(1− η1)(1− µ1){ψh`2 − ψ``2 }

−λδ(1− η1)
µ1(1− µ1)(1− η`2)

[µ1 + (1− µ1)(1− z)]
(1− α``2 )

Or,
1

λ(1− η1)(1− µ1)

∂Ψ

∂z
= 1 +

δ

λ
{ψh`2 − ψ``2 } − δ

µ1(1− η`2)

[µ1 + (1− µ1)(1− z)]
(1− α``2 ).

Observe that the last term can be written as δ(1−η`2)µ``2 (1−α``2 ). Using this and substituting

in for ψh`2 and ψ``2 , we have

1

λ(1− η1)(1− µ1)

∂Ψ

∂z
= 1 + δ

{
c(αh`2 )− c(α``2 )

λ

}
− δ(1− η`2)(αh`2 − α``2 ).

That is,

∂Ψ

∂z
= λ(1− η1)(1− µ1)[1 + δ

{
c(αh`2 )− c(α``2 )

λ

}
− δ(1− η`2)(αh`2 − α``2 )]. (19)

Now, when σ1 = 1, we have ∂z
∂α1

= −1. Therefore, when σ1 = 1,

∂Ψ

∂α1
= c′(α1)− λ(1− η1)(1− µ1)

[
1 + δ

{
c(αh`2 )− c(α``2 )

λ

}
− δ(1− η`2)(αh`2 − α``2 )

]
.(20)

Recall that αh`2 > α``2 , so c(αh`2 ) > c(α``2 ). Further, αh`2 − α``2 < 1. Further, under Assump-

tion 2, δ(1− η`2) ≤ 1. Therefore, δ(1− η`2)(αh`2 − α``2 ) < 1, so that

λ(1− η1)(1− µ1)

[
1 + δ

{
c(αh`2 )− c(α``2 )

λ

}
− δ(1− η`2)(αh`2 − α``2 )

]
> 0.

That is, ∂Ψ
∂z > 0.

Denote h(α1) = ∂Ψ
∂z = λ(1 − η1)(1 − µ1)[1 + δ{c(αh`2 ) − c(α``2 )}/λ − δ(1 − η`2)(αh`2 − α``2 )].
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Then, we can write equation (20) as

∂Ψ

∂α1
= c′(α1)− h(α1).

Further, c′(0) = 0 whereas h(0) > 0. Also, c′(1) > c(1) (because c(·) is convex) and c(1) > h(1).

Therefore, the optimal value of α1 is given by the first-order condition c′(α1) = h(α1), or

c′(α1) = λ(1− η1)(1− µ1)

[
1 + δ

{
c(αh`2 )− c(α``2 )

λ

}
− δ(1− η`2)(αh`2 − α``2 )

]
. (21)

Proof of Proposition 4

Recall that αh satisfies equation (7),

c′(α1) = λ(1− η1)(1− µ1)[1 + (δ/λ){c(αh`2 )− c(α``2 )} − δ(1− η`2)(αh`2 − α``2 )}].

Here, α``2 is in turn a function of α1.

Similarly, from Proposition 1, α̂ satisfies the equation c′(α̂) = λ(1−µ1)(1−η1). Therefore,

if

c(αh`2 )− c(α``2 ) < λ(1− η`2)(αh`2 − α``2 ), (22)

it follows that c′(α1) < c′(α̂) so that α1 < α̂. We show in the remainder of the proof that

equation (22) holds.

Consider the function w(x) = c(x)−λ(1−η`2)x. The derivative is w′(x) = c′(x)−λ(1−η`2).

Recall that φ(µ, η1) = c′−1(λ(1 − η1)(1 − µ)). Therefore, w′(x) = 0 for w = φ(0, η`2) and

w′(x) < 0 for all x < φ(0, η`2). That is, w(·) is strictly decreasing in the range [0, φ(0, η`2)).

Observe that φ(0, η`2) is the highest value of α that will be chosen by CRA in the one-shot

game when the probability of a high cash flow is η`2, and corresponds to the screening level

when µ = 0; that is, the CRA believes the firm has the O-type with probability 1. Further,

αh`2 = φ(0, η`2), and for any α1, we have α``2 = φ
(

µ1
µ1+(1−µ1)(1−σ1(1−α1))

)
< φ(0, η`2). Since w(·)

is strictly decreasing in the range [0, φ(0, η`2)), it follows that w(α``2 ) > w(αh`2 ). This directly

implies that equation (22) holds.

Proof of Proposition 5

(i) Suppose η1
η1+(1−η1)(1−µ1) < δ(1− η`2). The proof proceeds in two steps.
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Step 1 : If σ̂1(αh) < 1, then the optimal α1 is 0.

Proof of Step 1 : Suppose that σ̂1(αh) < 1. From Proposition 3 part (i), it follows that

σ̂1(0) < 1.

Recall that the overall two-period cost to the CRA is

Ψ(α1) = ψ1 + δ[η1ψ
hh
2 + ψ``2 + (1− µ1)(1− η1)(1− α1){ψh`2 − ψ``2 }].

Let z = σ̂1(1 − α1). From Proposition 3 part (ii), for any α1 such that σ̂1(α1) < 1, we know

that z is a constant. That is, ∂z
∂α1

= 0.

Now, from the proof of Lemma 5, we have dΨ
dα1

= c′(α1) + ∂Ψ
∂z

∂z
∂α1

= c′(α1) > 0 whenever z

is constant. With a slight abuse of notation, we write the CRA’s objective function as Ψ(α, σ).

Then, Ψ(0, σ̂1(0)) < Ψ(α1, σ̂1(α1)) for any α1 such that σ̂1(α1) < 1.

Next, we need to show that Ψ(0, σ̂1(0)) < Ψ(α1, 1) for any α1 such that σ̂1(α1) = 1.

Observe that ∂Ψ
∂σ1

= (1− α)∂Ψ
∂z . As observed in the proof of Lemma 5, under Assumption 2, it

follows that ∂Ψ
∂z > 0. Therefore, ∂Ψ

∂σ1
> 0.

Then, Ψ(αh, σ̂1(αh)) ≤ Ψ(αh, 1), because the error rate is strictly lower when σ1 is lower.

Further, by definition, Ψ(αh, 1) < Ψ(α1, 1) for any α1 6= αh. Therefore, Ψ(αh, σ̂1(αh)) <

Ψ(α1, 1) for any α1 such that σ1(α1) = 1.

But we know that Ψ(0, σ̂1(0)) < Ψ(α1, 1) for any α1 such that σ̂1(α1) = 1. Therefore, the

CRA minimizes its overall cost by choosing α1 = 0 whenever σ̂1(αh) < 1.

Step 2 : There exists λ̄ > 0 such that αh < ᾱ for all λ < λ̄, where ᾱ is as defined in Lemma 4.

Proof of Step 2 : Consider equation (7) that defines αh. We can write this equation as

c′(α1) = (1− η1)(1− µ1)[λ+ (δ{c(α̂h`2 )− c(α̂``2 )} − δλ(1− η`2)(α̂h`2 − α̂``2 )}].

The only terms on the right-hand side of the equation that contain α1 are those that include

α̂``2 .

From the first-order condition on the CRA’s problem in period 2, in each state ij, α̂ij2

decreases with λ and goes to 0 as λ goes to 0. Thus the right-hand side of (23) goes to zero as

λ→ 0. Therefore, the left-hand side must also go to zero as λ→ 0; that is, αh → 0 as λ→ 0.

By continuity, there must exist then λ0 > 0 such that, if λ < λ0, then αh < ᾱ.

At λ = λ0, we have σ̂1(αh) = 1. Observe that the expression u(λ) = Ψ(αh) − Ψ(0) is

decreasing in λ. There are two possibilities:
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1. Ψ(αh) < Ψ(0) when λ = λ0. Then, it is optimal to choose α1 = 0 for λ < λ0 and α = αh

for λ ≥ λ0. In this case, set λ̄ = λ0.

2. Ψ(αh) > Ψ(0). As λ increases, there exists some λ̄ such that Ψ(αh) = Ψ(0). Then, for

λ < λ̄, it is optimal to choose α1 = 0, and for λ > λ̄, it is optimal to choose α1 = αh.

(ii) Suppose η1
η1+(1−η1)(1−µ1) > δ(1 − η`2). Then, from Lemma 4 (ii), for all α1 ≥ 0, in the

equilibrium of the continuation game σ̂1(α) = 1. It follows that it is optimal to set α1 = αh.

Proof of Proposition 6

Treating α̂``2 as fixed, we can solve the O-type issuer’s indifference condition (equation (13)

in the proof of Proposition 3) for σ1 in closed form:

σ1 =
η1{1− (1− η`2)[(1− α``2 )(1 + δη`2)µ1 + α``2 ]}

(1− α1)(1− µ1){δµ1η`2(1− η1)(1− η`2)(1− α``2 ) + η1[1− α``2 (1− η`2)]}

This is invariant to αh`2 and αhh2 . Taking a derivative with respect to α``2 , we have

∂σ1

∂α``2
=

η1η
`
2(1− η`2)(η1 + δη`2)µ1

(1− α1)(1− µ1){δµ1η`2(1− η1)(1− η`2)(1− α``2 ) + η1[1− α``2 (1− η`2)]}2
.

This is unambiguously positive.
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